31 resultados para Mycobacterium tuberculosis

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis (Mtb) replicates within the human macrophages and we investigated the activating effects of retinoic acid (RA) and vitamin D3 (VD) on macrophages in relation to the viability of Mtb. A combination of these vitamins (RAVD) enhanced the receptors on THP-1 macrophage (Mannose receptor and DC-SIGN) that increased mycobacterial uptake but inhibited thesubsequent intracellular growth of Mtb by inducing reactive oxygen species (ROS) and autophagy. RAVD also enhanced antigen presenting and homing receptors in THPs that suggested an activated phenotype for THPs following RAVD treatment. RAVD mediated activation was also associated with a marked phenotypic change in Mtb infected THPs that fused with adjacent cells to formmultinucleate giant cells (MNGCs). Typically MNGCs occurred over 30 days of in vitro culture and contained non-replicating persisting Mtb for as long as 60 days in culture. We propose that the RAVD mediated inhibition of replicating Mtb leading to persistence of non-replicating Mtb within THPs may provide a novel human macrophage model simulating formation of MNGCs in humanlungs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberculosis (TB) remains a major public health burden. The immunocompetant host responds to Mycobacterium tuberculosis (MTB) infection by the formation of granulomas, which initially prevent uncontrolled bacterial proliferation and dissemination. However, increasing evidence suggests that granuloma formation promotes persistence of the organism by physically separating infected cells from effector lymphocytes and by inducing a state of non-replicating persistence in the bacilli, making them resistant to the action of antibiotics. Additionally, immune-mediated tissue destruction likely facilitates disease transmission. The granulomatous response is in part due to mycobacterial glycolipid antigens. Therefore, studies were first undertaken to determine the innate mechanisms of mycobacterial cord factor trehalose-6’6-dimycolate (TDM) on granuloma formation. Investigations using knock-out mice suggest that TNF-a is involved in the initiation of the granulomatous response, complement factor C5a generates granuloma cohesiveness, and IL-6 is necessary for maintenance of an established granulomatous responses. Studies were next performed to determine the ability of lactoferrin to modulate the immune response and pathology to mycobacterial cord factor. Lactoferrin is an iron-binding glycoprotein with immunomodulatory properties that decrease tissue damage and promote Th1 responses. Mice challenged with TDM and treated with lactoferrin had decreased size and numbers of granulomas at the peak of the granulomatous response, accompanied by increased IL-10 and TGF-b production. Finally, the ability of lactoferrin to serve as a novel therapeutic for the treatment of TB was performed by aerosol challenging mice with MTB and treating them with lactoferrin added to the drinking water. Mice given tap water had lung log10 CFUs of 7.5 ± 0.3 at week 3 post-infection. Lung CFUs were significantly decreased in mice given lactoferrin starting the day of infection (6.4 ± 0.7) and mice started therapeutically on lactoferrin at day 7 after established infection (6.5 ± 0.4). Total lung inflammation in lactoferrin treated mice was significantly decreased, with fewer areas of macrophages, increased total lymphocytes, and increased numbers of CD4+ and CD8+ cells. The lungs of lactoferrin treated mice had increased CD4+ IFN-g+ cells and IL-17 producing cells on ELISpot analysis. It is hypothesized that lactoferrin decreases bacterial burden during MTB infection by early induction of Th1 responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To investigate the association of the three major genetic groups of Mycobacterium tuberculosis with pulmonary and extra-pulmonary tuberculosis in clustered and non-clustered TB cases in the Houston area. ^ Study design. Secondary analysis of an ambi-directional study. ^ Study population. Three hundred fifty-eight confirmed cases of tuberculosis in the Houston that occurred between October 1995 and May 1997, who had been interviewed by the Houston T13 Initiative staff at Baylor College of Medicine, and whose isolates have had their DNA fingerprint and genetic group determined. ^ Exclusions. Individuals whose mycobacterial genotype was unknown, or whose data variables were unavailable. ^ Source of data. Laboratory results, patient interviews, and medical records at clinics and hospitals of the study population. ^ Results. In clustered cases, the majority of both, pulmonary and extra-pulmonary TB cases were caused by genetic group 1. Independent factors were assessed to determine the interactions that may influence the site of infection or increase the risk for one site or another. HIV negative males were protected against extra-pulmonary TB compared to HIV negative females. Individuals ages 1–14 years were at higher risk of having extra-pulmonary TB. Group 3 organisms were found less frequently in the total population in general, especially in extra-pulmonary disease. This supports the evidence in previous studies that this group is the least virulent and genetically distinct from the other two groups. Group 1 was found more frequently among African Americans than other ethnic groups, a trend for future investigations. ^ Among the non-clustered cases, group 2 organisms were the majority of the organisms found in both sites. They were also the majority of organisms found in African Americans, Caucasians, and Hispanics causing the majority of the infections at both sites. However, group 1 organisms were the overwhelming majority found in Asian/Pacific Islander individuals, which may indicate these organisms are either endemic to that area, or that there is an ethnic biological factor involved. This may also be due to a systematic bias, since isolates from individuals from that geographic region lack adequate copies of the insertion sequence IS6110, which leads to their placement in the non-clustered population. ^ The three genetic groups of Mycobacterium tuberculosis were not found equally distributed between sites of infection in both clustered and non-clustered cases. Furthermore, these groups were not distributed in the same patterns among the clustered and non-clustered cases, but rather in distinct patterns. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis infects more people worldwide each year than any other single organism. The Antigen 85 Complex, a family of fibronectin-binding proteins (Fbps) found in several species of mycobacteria and possibly involved in host interaction, is considered among the putative virulence factors of M. tuberculosis. These proteins are implicated in the production of trehalose dimycolate (TDM) and arabinogalactan-mycolate (AG-M), two prominent components of the mycobacterium cell wall and potent modulators of the immune system during infection. For these reasons, the principal members of the complex, FbpA and FbpB, were the focus of these studies. The genes encoding these proteins, fbpA and fbpB, were each disrupted by insertion of a kanamycin resistance cassette in a pathogenic strain of M. tuberculosis, H37Rv. Neither mutation affected growth in routine broth culture. Thin layer chromatography analysis of TDM and AG-M showed no difference in content between the parent strain H37Rv and the FbpA- and FbpB-deficient mutants grown under two different culture conditions. However, metabolic radiolabeling of the strains showed that the production of TDM (but not its precursor TMM) was delayed in the FbpA- and FbpB-deficient mutants compared to the parent H37Rv. During this same labeling period, FbpA-deficient mutant LAa1 failed to produce AG-M and in the FpbB-deficient mutant LAb1 production was decreased. In macrophage tissue culture assay, LAa1 failed to multiply when bacteria in early log phase were used to infect monolayers while LAb1 grew like the parent strain. The growth deficiency of LAa1 as well as the deficiencies in TDM and AG-M production were restored by complementing LAa1 with a functional fbpA gene. These results suggest that the FbpA and FbpB proteins are involved in synthesis of TDM (but not its precursor TMM) as well as AG-M. Other members of the complex appear to compensate for defects in synthesis caused by mutation of single genes in the complex over time. Mutation of the FbpA gene causes greater in vivo effect than mutation of the FbpB gene despite very similar deficiencies in the rate of production of mycolate containing molecules on the cell surface. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, a bacillus known to cause disease in humans since ancient times, is the etiological agent of tuberculosis (TB). The infection is primarily pulmonary, although other organs may also be affected. The prevalence of pulmonary TB disease in the US is highest along the US-Mexico border, and of the four US states bordering Mexico, Texas had the second highest percentage of cases of TB disease among Mexico-born individuals in 1999 (CDC, 2001). Between the years of 1993 and 1998, the prevalence of drug-resistant (DR) TB was 9.1% among Mexican-born individuals and 4.4% among US-born individuals (CDC, 2001). In the same time period, the prevalence of multi-drug resistant (MDR) TB was 1.4% among Mexican-born individuals and 0.6% among US-born individuals (CDC, 2001). There is a renewed urgency in the quest for faster and more effective screening, diagnosis, and treatment methods for TB due to the resurgence of tuberculosis in the US during the mid-1980s and early 1990s (CDC, 2007a), and the emergence of drug-resistant, multidrug-resistant, and extremely drug-resistant tuberculosis worldwide. Failure to identify DR and MDR-TB quickly leads to poorer treatment outcomes (CDC, 2007b). The recent rise in TB/HIV comorbidity further complicates TB control efforts. The gold standard for identification of DR-TB requires mycobacterial growth in culture, a technique taking up to three weeks, during which time DR/MDR-TB individuals harboring resistant organisms may be receiving inappropriate treatment. The goal of this study was to determine the sensitivity and specificity of real-time quantitative polymerase chain reaction (qPCR) using molecular beacons in the Texas population. qPCR using molecular beacons is a novel approach to detect mycobacterial mutations conferring drug resistance. This technique is time-efficient and has been shown to have high sensitivity and specificity in several populations worldwide. Rifampin (RIF) susceptibility was chosen as the test parameter because strains of M. tuberculosis which are resistant to RIF are likely to also be MDR. Due to its status as a point of entry for many immigrants into the US, control efforts against TB and drug-resistant TB in Texas is a vital component of prevention efforts in the US as a whole. We show that qPCR using molecular beacons has high sensitivity and specificity when compared with culture (94% and 87%, respectively) and DNA sequencing (90% and 96%, respectively). We also used receiver operator curve analysis to calculate cutoff values for the objective determination of results obtained by qPCR using molecular beacons. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The survival of Mycobacterium tuberculosis (MTB) in macrophages largely plays upon its ability to manipulate the host immune response to its benefit. Trehalose 6,6'-dimycolate (TDM) is a glycolipid found abundantly on the surface of MTB. Preliminary studies have shown that MTB lacking TDM have a lower survival rate compared to wild-type MTB in infection experiments, and that lysosomal colocalization with the phagosome occurs more readily in delipidated MTB infections. The purpose of this dissertation is to identify the possible mechanistic roles of TDM and its importance to the survival of MTB in macrophages. Our hypothesis is that TDM promotes the survival of MTB by targeting specific immune functions in host macrophages. Our first specific aim is to evaluate the effects of TDM on MTB in surface marker expression and antigen presentation in macrophages. We characterized the surface marker response in murine macrophages infected with either TDM-intact or TDM-removed MTB. We found that the presence of TDM on MTB inhibited the expression of surface markers which are important for antigen presentation and costimulation to T cells. Then we measured and compared the ability of macrophages infected by MTB with or without TDM to present Antigen 85B to hybridoma T cells. Macrophages infected with TDM-intact MTB were found to be less efficient at antigen presentation than TDM-removed MTB. Our second aim is to identify molecular mechanisms which may be targeted by TDM to promote MTB survival in macrophages. We measured macrophage responsiveness to IFN-γ before or after MTB infection and correlated SOCS production to the presence of TDM on MTB. Macrophages infected with TDM-intact MTB were found to be less responsive to IFN-γ. This may be attributed to the TDM-driven production of SOCS, which was found to affect phosphorylation of the JAK-STAT signaling pathway. We also identified the importance of TLR2 and TLR4 in the initiation of SOCS by TDM-intact MTB in host macrophages. In conclusion, our studies reveal new insights into how TDM regulates macrophages and their immune functions to aid in the survival of MTB.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trehalose dimycolate (TDM) is a mycobacterial glycolipid that is released from the surface of virulent M. tuberculosis. We evaluated the rate of growth, colony characteristics and production of TDM by Mycobacterium tuberculosis strains isolated from different clinical sites. Since detergent removes TDM from organisms, we analyzed growth rate and colony morphology of 79 primary clinical isolates grown as pellicles on the surface of detergent free Middlebrook 7H9 media. The genotype of each had been previously characterized. TDM production was measured by thin layer chromatography on 32 of these isolates. We found that strains isolated from pulmonary sites produced large amounts of TDM, grew rapidly as thin spreading pellicles, showed early cording (<1 week) and climbed the sides of the dish. In contrast, the extrapulmonary isolates (lymph node and bone marrow) produced less TDM (p<0.01), grew as discrete patches with little tendency to spread or climb the walls (p<0.02). The Beijing pulmonary (BP) isolates produced more TDM than non Beijing pulmonary isolates. The largest differences were observed in Beijing strains. The Beijing pulmonary isolates produced more TDM and grew faster than the Beijing extrapulmonary isolates (p<0.01). This was true even when the pulmonary and extrapulmonary isolates were derived from the same clade. These growth characteristics were consistently observed only on the first passage after primary isolation. This suggests that the differences in growth rate and TDM production observed reflect differences in gene expression patterns of pulmonary and extrapulmonary infections, that Mycobacterium tuberculosis in the lung grows more rapidly and produces more TDM than it does in extrapulmonary sites. This provides new opportunities to investigate gene expression of Mycobacterium tuberculosis in human.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detection of multidrug-resistant tuberculosis (MDR-TB), a frequent cause of treatment failure, takes 2 or more weeks to identify by culture. RIF-resistance is a hallmark of MDR-TB, and detection of mutations in the rpoB gene of Mycobacterium tuberculosis using molecular beacon probes with real-time quantitative polymerase chain reaction (qPCR) is a novel approach that takes ≤2 days. However, qPCR identification of resistant isolates, particularly for isolates with mixed RIF-susceptible and RIF-resistant bacteria, is reader dependent and limits its clinical use. The aim of this study was to develop an objective, reader-independent method to define rpoB mutants using beacon qPCR. This would facilitate the transition from a research protocol to the clinical setting, where high-throughput methods with objective interpretation are required. For this, DNAs from 107 M. tuberculosis clinical isolates with known susceptibility to RIF by culture-based methods were obtained from 2 regions where isolates have not previously been subjected to evaluation using molecular beacon qPCR: the Texas–Mexico border and Colombia. Using coded DNA specimens, mutations within an 81-bp hot spot region of rpoB were established by qPCR with 5 beacons spanning this region. Visual and mathematical approaches were used to establish whether the qPCR cycle threshold of the experimental isolate was significantly higher (mutant) compared to a reference wild-type isolate. Visual classification of the beacon qPCR required reader training for strains with a mixture of RIF-susceptible and RIF-resistant bacteria. Only then had the visual interpretation by an experienced reader had 100% sensitivity and 94.6% specificity versus RIF-resistance by culture phenotype and 98.1% sensitivity and 100% specificity versus mutations based on DNA sequence. The mathematical approach was 98% sensitive and 94.5% specific versus culture and 96.2% sensitive and 100% specific versus DNA sequence. Our findings indicate the mathematical approach has advantages over the visual reading, in that it uses a Microsoft Excel template to eliminate reader bias or inexperience, and allows objective interpretation from high-throughput analyses even in the presence of a mixture of RIF-resistant and RIF-susceptible isolates without the need for reader training.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The type 2 diabetes (diabetes) pandemic is recognized as a threat to tuberculosis (TB) control worldwide. This secondary data analysis project estimated the contribution of diabetes to TB in a binational community on the Texas-Mexico border where both diseases occur. Newly-diagnosed TB patients > 20 years of age were prospectively enrolled at Texas-Mexico border clinics between January 2006 and November 2008. Upon enrollment, information regarding social, demographic, and medical risks for TB was collected at interview, including self-reported diabetes. In addition, self-reported diabetes was supported by blood-confirmation according to guidelines published by the American Diabetes Association (ADA). For this project, data was compared to existing statistics for TB incidence and diabetes prevalence from the corresponding general populations of each study site to estimate the relative and attributable risks of diabetes to TB. In concordance with historical sociodemographic data provided for TB patients with self-reported diabetes, our TB patients with diabetes also lacked the risk factors traditionally associated with TB (alcohol abuse, drug abuse, history of incarceration, and HIV infection); instead, the majority of our TB patients with diabetes were characterized by overweight/obesity, chronic hyperglycemia, and older median age. In addition, diabetes prevalence among our TB patients was significantly higher than in the corresponding general populations. Findings of this study will help accurately characterize TB patients with diabetes, thus aiding in the timely recognition and diagnosis of TB in a population not traditionally viewed as at-risk. We provide epidemiological and biological evidence that diabetes continues to be an increasingly important risk factor for TB.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of tuberculosis, is a facultative intracellular pathogen that uses the host mononuclear phagocyte as a niche for survival and replication during infection. Complement component C3 has previously been shown to enhance the binding of M. tuberculosis to mononuclear phagocytes. Using a C3 ligand affinity blot protocol, we identified a 30 kDa C3-binding protein in M. tuberculosis as heparin-binding hemagglutinin (HbhA). HbhA was found to be a hydrophobic protein that localized to the cell membrane/cell wall fraction of M. tuberculosis, and this protein has previously been shown by others to be located on the surface of M. tuberculosis. The C3-binding activity of HbhA was localized to the C-terminus of the protein, which consists of lysine-alanine repeats. Full-length recombinant HbhA coated onto latex beads was shown to mediate the adherence of the beads to murine macrophage-like cells in both a C3-dependent and a C3-independent manner. An in-frame 576 by deletion in the hbhA gene was created in a virulent strain of M. tuberculosis using a PCR technique known as gene splicing by overlap extension (SOEing). Using the ΔhbhA mutant, HbhA was found not to be necessary for growth of M. tuberculosis in laboratory media or in macrophage-like cells, nor is HbhA required for adherence of M. tuberculosis to macrophage-like cells. HbhA is, however, required for infectivity of M. tuberculosis in mice. Mice infected with the ΔhbhA mutant show decreased growth in the lungs, liver, and spleen compared to mice infected with the wild-type strain. Using the ΔhbhA mutant strain, we were able to purify and identify a second 30-kDa C3-binding protein, HupB. These data demonstrate that HbhA is required for the in vivo but not the in vitro survival of M. tuberculosis and that HbhA is not necessary for the adherence of M. tuberculosis to the macrophage-like cells used in these studies. The expression of two proteins that bind human C3 may aid in the efficient binding of M. tuberculosis to complement receptors for uptake into mononuclear cells, or may influence other aspects of the host-parasite interaction. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The most common test to identify latent tuberculosis is the tuberculin skin test that detects T cell responses of delayed type hypersensitivity type IV. Since it produces false negative reactions in active tuberculosis or in high-risk persons exposed to tuberculosis patients as shown in this report, we studied antibody profiles to explain the anergy of such responses in high-risk individuals without active infection. Our results showed that humoral immunity against tuberculin, regardless of the result of the tuberculin skin test is important for protection from active tuberculosis and that the presence of high antibody titers is a more reliable indicator of infection latency suggesting that latency can be based on the levels of antibodies together with in vitro proliferation of peripheral blood mononuclear cells in the presence of the purified protein derivative. Importantly, anti-tuberculin IgG antibody levels mediate the anergy described herein, which could also prevent reactivation of disease in high-risk individuals with high antibody titers. Such anti-tuberculin IgG antibodies were also found associated with blocking and/or stimulation of in vitro cultures of PBMC with tuberculin. In this regard, future studies need to establish if immune responses to Mycobacterium tuberculosis can generate a broad spectrum of reactions either toward Th1 responses favoring stimulation by cytokines or by antibodies and those toward diminished responses by Th2 cytokines or blocking by antibodies; possibly involving mechanisms of antibody dependent protection from Mtb by different subclasses of IgG.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Postprimary tuberculosis occurs in immunocompetent people infected with Mycobacterium tuberculosis. It is restricted to the lung and accounts for 80% of cases and nearly 100% of transmission. Little is known about the immunopathology of postprimary tuberculosis due to limited availability of specimens. Tissues from 30 autopsy cases of pulmonary tuberculosis were located. Sections of characteristic lesions of caseating granulomas, lipid pneumonia, and cavitary stages of postprimary disease were selected for immunohistochemical studies of macrophages, lymphocytes, endothelial cells, and mycobacterial antigens. A higher percentage of cells in lipid pneumonia (36.1%) and cavitary lesions (27.8%) were positive for the dendritic cell marker DEC-205, compared to granulomas (9.0%, P < .05). Cavities contained significantly more T-regulatory cells (14.8%) than found in lipid pneumonia (5.2%) or granulomas (4.8%). Distribution of the immune cell types may contribute to the inability of the immune system to eradicate tuberculosis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background. The population-based Houston Tuberculosis Initiative (HTI) study has enrolled and gathered demographic, social, behavioral, and disease related data on more than 80% of all reported Mycobacterium Tuberculosis (MTB) cases and 90% of all culture positive patients in Houston/Harris County over a 9 year period (from October 1995-September 2004). During this time period 33% (n=1210) of HTI MTB cases have reported a history of drug use. Of those MTB cases reporting a history of drug use, a majority of them (73.6%), are non-injection drug users (NIDUs). ^ Other than HIV, drug use is the single most important risk factor for progression from latent to infectious tuberculosis (TB). In addition, drug use is associated with increased transmission of active TB, as seen by the increased number of clonally related strains or clusters (see definition on page 30) found in this population. The deregulatory effects of drug use on immune function are well documented. Associations between drug use and increased morbidity have been reported since the late 1970's. However, limited research focused on the immunological consequence of non-injection drug use and its relation to tuberculosis infection among TB patients is available. ^ Methods. TB transmission patterns, symptoms, and prevalence of co-morbidities were a focus of this project. Smoking is known to suppress Nitric Oxide (NO) production and interfere with immune function. In order to limit any possible confounding due to smoking two separate analyses were done. Non-injection drug user smokers (NIDU-S) were compared to non-drug user smokers (NDU-S) and non-injection drug user non-smokers (NIDU-NS) were compared to non-drug user non-smokers (NDU-NS) individually. Specifically proportions, chi-square p-values, and (where appropriate) odds ratios with 95% confidence intervals were calculated to assess characteristics and potential associations of co-morbidities and symptoms of TB among NIDUs HTI TB cases. ^ Results. Significant differences in demographic characteristics and risk factors were found. In addition drug users were found to have a decreased risk for cancer, diabetes mellitus, and chronic pulmonary disease. They were at increased risk of having HIV/AIDS diagnosis, liver disease, and trauma related morbidities. Drug users were more likely to have pulmonary TB disease, and a significantly increased amount of clonally related strains of TB or "clusters" were seen in both smokers and non-smoker drug users when compared to their non-drug user counterparts. Drug users are more likely to belong to print groups (clonally related TB strains with matching spoligotypes) including print one and print three and the Beijing family group, s1. Drug users were found to be no more likely to experience drug resistance to TB therapy and were likely to be cured of disease upon completion of therapy. ^ Conclusion. Drug users demographic and behavioral risk factors put them at an increased risk contracting and spreading TB disease throughout the community. Their increased levels of clustering are evidence of recent transmission and the significance of certain print groups among this population indicate the transmission is from within the social family. For these reasons a focus on this "at risk population" is critical to the success of future public health interventions. Successful completion of directly observed therapy (DOT), the tracking of TB outbreaks and incidence through molecular characterization, and increased diagnostic strategies have led to the stabilization of TB incidence in Houston, Harris County over the past 9 years and proven that the Houston Tuberculosis Initiative has played a critical role in the control and prevention of TB transmission. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tuberculosis remains one of the leading causes of death in man due to a single infectious agent. An estimated one-third of the world's population is infected with the causative agent, Mycobacterium tuberculosis (Mtb), despite the availability of the widely used vaccine, BCG. BCG has significantly varying protection rates with the lowest level of protection seen with the most common form of TB, adult pulmonary TB. Thus, numerous studies are being conducted to develop a more efficient vaccine. The ideal candidate vaccine would possess the ability to induce a solid and strong Th1 response, as this is the subset of T cells primarily involved in clearance of the infection. A novel vaccine should also induce such a response that may be recalled and expanded upon subsequent infection. Our group has introduced a mutant of a virulent strain of Mtb which lacks a component of the immunogenic antigen 85 complex (Ag85). Our vaccine, ΔfbpA, does not secrete the fibronectin binding protein Ag85A, and this has shown to lead to its attenuation in both murine macrophages and mice. Previous studies have also proven that ΔfbpA is more protective in mice than BCG against virulent aerosol challenge with Mtb. This study addresses the mechanisms of protection observed with ΔfbpA by phenotyping responding T cells. We first evaluated the ability of dendritic cells to present the mycobacteria to naïve T cells, an in vitro mock of primary immunization. We also measured the response of primed T cells to macrophage-presented mycobacteria to interpret the possible response of a vaccinated host to a boost. We concluded that ΔfbpA can elicit a stronger Th1 response compared to BCG in vitro, and further observed that this enhanced response is at least partly due to the presence of proteins encoded by a region of the genome absent in all strains of BCG. Finally, we observed this heightened Th1 response in the mouse model after primary vaccination and a virulent aerosol challenge. The cytolytic T cell response was also measured after virulent challenge and was found to be superior in the ΔfbpA-treated group when compared to the BCG group. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mechanism for higher susceptibility of diabetes patients to TB is unknown. Chronic hyperglycemia has been shown to be associated with altered immunity to Mycobacterium tuberculosis, and may explain the higher risk of TB among diabetes patients. However, it is possible that other conditions that frequently occur in these patients are also contributing to TB susceptibility. Our goal was to determine whether lipid metabolism, liver function and/or chronic inflammation are altered in tuberculosis (TB) patients with diabetes (DM), compared to non-DM.^ Confirmed TB patients who were 20 years or older (n=159) were selected from a database in the south Texas and northeast Mexico area. Differences between serum values for liver function, lipid metabolism and/or chronic inflammation were compared between TB patients with DM to non-DM.^ We found that CRP was the most frequent alteration, with about 80% having high values suggestive of chronic inflammation. The other frequent abnormalities were high triglycerides in about 40% of the patients and low HDL cholesterol in about 60% of the patients. Otherwise, less than 10% of the TB patients had an abnormal finding for any of the other laboratory tests. The abnormalities were not more frequent among the patients with either DM (versus non-DM) or high HbA1c (versus normal).^ A possible explanation for the high levels or CRP may be that everyone in the study had TB, which in itself causes inflammation and may have masked the increased CRP levels that characterize diabetes patients. There was a mild alteration in lipid metabolism in patients with DM, which is unlikely to explain altered immunity to TB. Otherwise, liver function tests were normal in patients with DM. Therefore the processing of anti-TB medications should be no different between the TB patients with and without diabetes. Our findings, however, do not rule out that other study populations have more remarkable metabolic alterations associated with diabetes. Therefore, it would be interesting to conduct a similar study in patients from different ethnic groups (White, African American, or Native American) in order to see if the same pattern is observed.^